시계열분석은 어떤문제를 다루나 - regression, regulariRegularization Algorithms, clustering에서 주로 쓰며 ,Regression이 많이 쓰인다. 시계열 분석과 기계학습의 차이 확률 과정(Stochastic Process): 상관 관계를 가지는 무한개의 변수의 순서열 시계열 데이터(Time Series Data): 일정한 시간 간격으로 기록된 확률과정의 샘플 독립변수(𝑥𝑡xt)와 알고자 하는 종속변수(𝑦𝑡yt)가 시간단위(𝑡t)를 포함 모델의 출력(Output)은 𝑦y의 시간 𝑡t에서의 예측값 기계학습과 시계열예측 간 큰 차이가 존재하기에, 시계열 변수생성은 약간의 조정들을 요구함 시계열 변수 신규 변수를 생성하는 것은 분석에서 가장 중요하고 시간이 많이 걸리는..