반응형

ARIMA 2

[시계열분석] 시계열 알고리즘 - 적분 선형확률 과정(2) - SARIMA

SARIMA(Seasonal ARIMA) ARIMA 모형은 Non-seasonal 데이터 또는 Non-seasonal ARIMA 모델을 가정 -> 계절성 패턴 반영 모델 필요 SARIMAX 클래스 이용하면 Multiplicated SARIMA(p,d,q)x(P,D,Q,m) 모형 추정 및 예측 가능 SARIMAX의 fit 메서드는 모수를 추정하여 그 결과를 SARIMAX Result 클래스 인스턴스로 반환 매개변수 설명 p : ARIMA의 AR 성분과 동일 d : 연속 차분 작업이 수행되는 횟수 q : ARIMA의 MA 성분과 동일 m : 계절성 시차 P (계절적 AR 구성 요소) :현재 관측치에 대한 과거 시차의 영향. p 와 달리 과거 시차는 m 시차의 배수로 현재 시차와 분리. 예를 들어, m = 1..

[시계열분석] 시계열 알고리즘 - 적분 선형확률 과정(1) - ARIMA

ARIMA(Auto-Regressive Integrated Moving Average) ARIMA(p,d,q): 1이상의 차분이 적용하여 알고리즘의 차수(p and q)가 유한한 AR(p)와 MA(q)의 선형조합"** 비정상성인 시계열 데이터 Y_t를 차분한 결과로 만들어진 위 식이가 정상성인 데이터이고 ARMA 모형을 따르면 원래의 Y_t를 ARIMA 모형이라고 함 => d ≥ 1 : Y_t는 비정상성 시계열 데이터이다(단위근을 갖는다) d번 차분한 시계열이 정상성인 데이터이고 ARMA(p,q) 모형을 따른다면 적분차수(Order of Integrarion)가 d인 ARIMA(p,d,q)로 표기함 p=0: ARIMA(0,d,q) = IMA(d,q) q=0: ARIMA(p,d,0) = ARI(p,d) A..

반응형