반응형

Feature Transformer 2

[SparkML] Spark ML Pipeline (DataFrame, Transformer, Estimator, Parameter)

모델 빌딩과 관련된 문제들 트레이닝 셋의 관리가 안됨 모델 훈련 방법이 기록이 안됨 어떤 트레이닝 셋을 사용했는지? 어떤 피쳐들을 사용했는지? 하이퍼 파라미터는 무엇을 사용했는지? 모델 훈련에 많은 시간 소요 모델 훈련이 자동화가 안된 경우 매번 각 스텝들을 노트북 등에서 일일히 수행 에러가 발생할 여지가 많음 (특정 스텝을 까먹거나 조금 다른 방식 적용) ML Pipeline 데이터 과학자가 머신러닝 개발과 테스트를 쉽게 해주는 기능 (데이터 프레임 기반) 머신러닝 알고리즘에 관계없이 일관된 형태의 API를 사용하여 모델링이 가능 ML 모델개발과 테스트를 반복가능해줌 4개 요소로 구성 : DataFrame,Transformer, Estimator, Parameter 모델 훈련 방법이 기록이 안되는 문제..

[SparkML] Spark ML 피쳐 변환(문자 카테고리형 데이터 처리, Scaling, Null값 채우기) (StringIndexer, OneHotEncoder) (StandardScaler, MinMaxScaler) (Imputer)

피쳐 추출과 변환 피쳐 값들을 모델 훈련에 적합한 형태로 바꾸는 것을 지칭 파이썬과 다르게 각각의 feature를 모델에 넣는 것이 아닌 feature를 하나의 vector로 묶어서 모델에 넣음 크게 두 가지가 존재: Feature Extractor와 Feature Transformer Feature Transformer https://spark.apache.org/docs/latest/ml-features.html#feature-transformers 피쳐 값들은 숫자 필드이어야함 텍스트 필드(카테고리 값들)를 숫자 필드로 변환해야함 숫자 필드 값의 범위 표준화 숫자 필드라고 해도 가능한 값의 범위를 특정 범위(0부터 1)로 변환해야 함 이를 피쳐 스케일링 (Feature Scaling) 혹은 정규화 ..

반응형