편향-분산 상충관계(Bias-variance Trade-off) 1) 편향과 분산의 정의 편향(Bias): 점추정 예측값과 실제값의 차이 모델 학습시 여러 데이터로 학습 후 예측값의 범위가 정답과 얼마나 멀리 있는지 측정 편향(Bias(Real)): 모형화(단순화)로 미처 반영하지 못한 복잡성 => 편향이 작다면 Training 데이터 패턴(복잡성)을 최대반영 의미 => 편향이 크다면 Training 데이터 패턴(복잡성)을 최소반영 의미 분산(Variance): 구간추정 학습한 모델의 예측값이 평균으로부터 퍼진 정도(변동성/분산) 여러 모델로 학습을 반복한다면, 학습된 모델별로 예측한 값들의 차이를 측정 분산(Variance(Real)): 다른 데이터(Testing)를 사용했을때 발생할 변화 => 분산이..