반응형

백색잡음 2

[시계열분석] 시계열 알고리즘 - 일반 선형확률 과정(1) - MA(이동평균)

일반 선형확률과정(General Linear Process) "시계열 데이터가 가우시안 백색잡음의 현재값과 과거값의 선형조합" 세부 알고리즘: WN(White Noise) MA(Moving Average) AR(Auto-Regressive) ARMA(Auto-Regressive Moving Average) ARIMA(Auto-Regressive Integrated Moving Average) SARIMA(Seasonal ARIMA) WN(White Noise) 1) 잔차들은 정규분포이고, (unbiased) 평균 0과 일정한 분산을 가져야 함:** 2) 잔차들이 시간의 흐름에 따라 상관성이 없어야 함:** - 자기상관함수(Autocorrelation Fundtion(ACF))를 통해 Autocorrela..

[시계열분석] 잔차진단(1) - 백색잡음, 자기상관함수, 편자기상관함수

예측 분석 이후 예측이 잘 되었는지 그리고 데이터의 시간패턴이 잘 추출 되었는지 평가하는 것이 중요 검증지표는 예측값과 실제값이 얼마나 비슷한지를 측정하는 것이며, 모형이 시간특성을 잘 잡아내는지를 측정하지는 않음 회귀분석 평가지표는 아래링크 참조 : ysyblog.tistory.com/81 [Machine Learning][머신러닝] 회귀모델개요와 평가지표 회귀(Regression) 지도 학습(Supervised Learning)으로 예측할 Target이 연속형(continuous) 데이터(float)인 경우 회귀의 주요 평가 지표 예측값과 실제 값간의 차이를 구한다 MSE (Mean Squared Error) 실제 값.. ysyblog.tistory.com 시간특성 패턴이 잘 추출되었는지 확인하기 위..

반응형