반응형

편향 2

[인과추론] 인과추론의 기본개념

인과추론의 기본개념이 포스팅은 인과추론을 이해하는데 필요한 중요한 개념들에 대해 정리하였습니다. 아래 내용은 인과추론을 공부할 때 꼭 알아야할 개념들입니다.해당 포스팅은 아래 내용을 다룹니다처치와 결과인과모델개입개별처치효과잠재적결과SUTVA인과추정량편향독립성가정랜덤화와 식별 연관관계와 인과관계연관관계(상관관계)는 인과관계를 의미하지 않음인과관계를 분석하기 위해서는 문제를 구체화해야함EX) 할인이 매출에 도움되는가 X ->크리스마스이전에  어린이 장난감을 할인하면 판매량이 증가할 것인가?분석단위 : 일반적으로 개입(처치)하려는 대상. 분석단위는 대부분 사람이나 가끔 회사 등 다를 수 있음처치와 결과Ti는 실험대상 i의 처치여부를 나타냄처치(Treatment) : 구하려는 효과에 대한 개입. EX) 가격할인..

[Machine Learning][머신러닝] Bagging, Boosting 정리

편향-분산 상충관계(Bias-variance Trade-off) 1) 편향과 분산의 정의 편향(Bias): 점추정 예측값과 실제값의 차이 모델 학습시 여러 데이터로 학습 후 예측값의 범위가 정답과 얼마나 멀리 있는지 측정 편향(Bias(Real)): 모형화(단순화)로 미처 반영하지 못한 복잡성 => 편향이 작다면 Training 데이터 패턴(복잡성)을 최대반영 의미 => 편향이 크다면 Training 데이터 패턴(복잡성)을 최소반영 의미 분산(Variance): 구간추정 학습한 모델의 예측값이 평균으로부터 퍼진 정도(변동성/분산) 여러 모델로 학습을 반복한다면, 학습된 모델별로 예측한 값들의 차이를 측정 분산(Variance(Real)): 다른 데이터(Testing)를 사용했을때 발생할 변화 => 분산이..

반응형