반응형

RMSE 2

[회귀분석] 단순선형회귀분석(Linear Regression)(11) - 회귀직선의 오차

RMSE (제곱근-평균-제곱 오차) 추정의 표준오차(standard error of estimate) 또는 회귀의 표준오차 (standard error of regression)라고도 불림 실제 값과 예측치의 차이 회귀직선과 RMSE 회귀직선은 x값에 따라 분류된 부분집단 별로 자료의 중심을 알려줌 RMSE는 개별 관측치 속한 준거집단의 평균으로부터 떨어진 정도를 대략적으로 알려준다. 회귀직선과 RMSE를 알면 평균과 표준편차를 알 때처럼 68-95 법칙을 활용해 볼 수 있음. RMSE 공식 예시 산포도에서 전형적인 점(typical point)은 회귀직선으로부터 위 또는 아래로 9.3kg 정도 떨어져 있다. 실제 몸무게는 추정된 몸무게와 약 9.3kg 정도 다름 분모에 표본크기가 아닌 자유도가 사용 자..

[Machine Learning][머신러닝] 회귀모델의 평가지표

회귀모델의 평가지표지도 학습(Supervised Learning)으로 예측할 Target이 연속형(continuous) 데이터(float)인 경우 회귀분석을 진행하는데 이때 모델을 평가할 때 어떤 지표를 사용하는지 알아본다.회귀의 주요 평가 지표회귀분석에 사용하는 평가지표는 예측값과 실제 값간의 차이를 사용하는데, 이를 구하는 방법이 다르다.MSE (Mean Squared Error)실제 값과 예측값의 차를 제곱해 평균 낸 것mean_squared_error()'neg_mean_squared_error'RMSE (Root Mean Squared Error)MSE는 오차의 제곱한 값이므로 실제 오차의 평균보다 큰 값이 나온다. MSE의 제곱근이 RMSE이다.scikit-learn은 함수를 지원하지 않는다...

반응형