군집 (Clustering) 비지도 학습으로 비슷한 특성을 가지는 데이터들끼리 그룹으로 묶는다. 적용 고객 분류 고객 데이터를 바탕으로 비슷한 특징의 고객들을 묶어 성향을 파악할 수 있다. 이상치 탐지 모든 군집에 묶이지 않는 데이터는 이상치일 가능성이 높다 준지도학습 레이블이 없는 데이터셋에 군집을 이용해 Label을 생성해 분류 지도학습을 할 수 있다. 또는 레이블을 좀더 세분화 할 수 있다. k-mean (K-평균) 가장 널리 사용되는 군집 알고리즘 중 하나. 데이터셋을 K의 군집으로 나눈다. K는 하이퍼파라미터로 사용자가 지정한다. 군집의 중심이 될 것 같은 임의의 지점(Centroid)을 선택해 해당 중심에 가장 가까운 포인드들을 선택하는 기법. 알고리즘 이해 특징 K-mean은 군집을 원 모양..